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Definition

Denotational Design is a type of thinking that prioirtizes thinking about the meaning and
creating precise and elegant specifications using tools from abstract algebra and category
theory.

Notation

In denotational design, the function [-] is used to take any object to its meaning.
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Why are we interested? Software and hardware engineering are built upon a tower of

hodge-podge and ad-hoc foundations; desirable properties such as correctness are either not
checked or not even specified

“That is not only not right; it is not even wrong” - Wolgang Pauli

Using mathematics can return elegance to computation.



Philosophy

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits).
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Figure 1: A Diagram Showing the Relationship
Between Representations and Meanings

We care about problems in mathematics, but
our computations take place over physics
(electrons, circuits). The denotation function
[-] gives us the meaning of any representation
of electrons or bits.

Question

What does it mean for a function over
representations to be correct?

Theorem

We say a function over representations is
correct if Figure 6 commutes, i.e. if

[A+g~ B] = [A] +n [BI.
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Why Computer Arithmetic

Reasons why | chose computer arithmetic

1. It is elementary; Most people have some exposure

2. It is a good way to show denotational design

The focus is not on any specific circuit component, but on specifications as to why it is
correct
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Simplifications

For the purposes of this talk, | simplified from my paper:

1. In my paper, | used the computer theorem prover language Agda to prove my
propositions correct. You do not need to know programming for this talk.

2. In my paper, | talked about category theory, but for the sake of this talk, just imagine
everything is occuring in the category of functions.

3. In my paper, | used little endian encoding, but in this talk, | will use big endian encoding
because most people are probably more familiar with big endian.



We will represent binary numbers as lists of bits, where the least significant bit is on the right
(big endian encoding).

As an additional preliminary, we expect the reader to be familiar with common bitwise
operations, including - @ -, - V-, and - A - (see table 1).
Notation

We use N to denote our number system, we use B to represent a bit, and we use B" to
denote an n-bit representation.

0¢0=0 O0v0O=0 0AO0=0
0Opl=1 O0Vvli=1 0A1=0
10=1 1v0=1 1A0=0
1#1=0 1v0=1 1Al=1




Addition



Converting B” to N

Anything we do is only correct modulo our meaning function [-].

[bn—1--- bibo] = [bo] + 2[bn—1--- bi] (1)
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Converting B” to N

Anything we do is only correct modulo our meaning function [-].

[bn—1--- bibo] = [bo]l + 2[bn-1--- b1] (1)
= [bo] + 2[ba] + 4[b2] + - - + 2" [bn-1] (2)

Input

3
-
‘
ﬂn
w

Figure 2: An Example showing [101] =5
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4y BxB— B (3)
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Half-Adder Specification

A half adder is a function that adds two bits (possibly with a carry).
4y BxB— B (3)
We need a correctness specification for a half-adder.

VA, B € B! [A+4 B] = [A] +n [B] (4)



Half-Adder Example

Input

VA, B € B!

A+yB=(AABA® B) (5)

and

DY,

ﬁ»@
N1 U
1 1
u__']_

Xor

output

Figure 3: An Example Showing 1 +41 =10



Full-Adder Specification

A full-adder adds 3 bits with possibly a carry.
+£(, )  BxB xB — B (6)

VA,B,CeB!  [+£(A B, O)] = [A] + [B] + [C] (7)



Full-Adder Example

VA, B, C c B! +£(A,B,O)=(AANBV(A®B)ACA®B® () (8)

half-adder

Input

1 half-adder

outputj

Figure 4: An Example Showing +£(1,0,1) = 10



Ripple Adder Specification

4o Bl x B" x B" — B! (9)

VA,BeB" YCeB! [A+S. B] = [A] +n[B] +n[C] (10)



Ripple Adder Specification

1 (111191
+] 1111
11010

Table 2: Grade-School Addition

an—1-+ 323130 +gn bp1--- babiby = (an—1--- 3231 +5h 1 bo1--- baby)ro
where (11)

ciro = +r(ao, bo, o)



Ripple Adder Picture

Input 1

Input 2

1 1 | Full-Adder

— Full-Adder 0

Full-Adder

Figure 5: An Example Showin 101 +3, 111 = 1100

([[-[

Output
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Ripple Adder Proof

Proof.

Induct on n. If n =1, we just have a full-adder. Otherwise, let n = n+ 1.
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=la,---araiag] + [[b, - -- bobibg] + [[co] (21)
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Multiplication Specification

Before we implement multiplication, we first need a specification. The specification for
multiplication is very similar to that of addition.

VAEB™ BeB"  [Axgme B] = [A] xn[B]

XN

N N

1 . [1

Xgn

B" B"

Figure 6: Specification of Multiplication
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Bit Multiplier

Our first building block is multiplication by a single bit. The correctness specification is
Vbe Bl AecB"  [bxgu. Al = [b] xn[A]
One implementation is

- XgLm-: B x B" — B"

a xpLm B=if{a, B,0)
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Shift Right

We also need the ability to double a number, which we will call - < 1. We will have
specification
VB € B" [B< 1] =2[8]

We can implement the specification by just appending a 0 to the end.

bp_1---bibg <1=b,_1---b1by0



Shift and Add

17011
x|1|1|1]0
0j0f0]O
11011
11011
+|1(0]1 /|1
1/]0(0|1|1]0]|1]0

Table 3: An Example shift-and-add multiplication

bp_1...b1by Xgnm A= by Xgl,m A+ (b,,,l, ..., b X gn—1,m A) <1 (22)



1. Carry-Lookahead Adders



1. Carry-Lookahead Adders
2. Binary Subtraction
3. Binary Division
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Key Takeaways

1. We can formally prove the correctness of software and hardware components.

2. Homomoprhisms and category theory can give us more elegant and precise specifications.



Questions?

Ask me any questions. Or if you have any questions later

1. Email me at atticusmkuhn@gmail.com

2. On Discord at Euler#2074
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