
Denotationally Correct Computer Arithmetic

Atticus Kuhn

2023-07-16 11:03 GMT-8

Abstract
In this paper, we will give an introduction to basic category theory. We then will use knowledge
of category theory, as Agda (see [1]), to prove the formal correctness of machine algorithms for
arithmetic over bits. Our goal is to make the most elegant and precise specification of binary
arithmetic for proofs of correctness.

We will specifically be focusing on conversions between numbers and binary representations,
as well as addition and multiplication of binary representations.

Contents
1 Introduction 2

2 Basic Introduction to Category Theory 2
2.1 Functors . 3

3 Preliminaries 4

4 Converting Between Numbers and Bits 6

5 Addition 7
5.1 Correctness of Addition . 7
5.2 Defining Addition . 8
5.3 Proof of Correctness . 11

6 Multiplication 13

7 Future Work 16

1

1 Introduction
The goal of this paper is to use the techniques of Denotational Design (see [2]), where we specify
the meaning (or “denotation”) as elegantly as possible for the ease of proof. This paper will use
the example of computer binary arithmetic. We will specify the correctness of binary arithmetic
using tools from category theory, and then prove that our definitions satisfy the specification.
A background in category theory will be helpful, but the reader will not need to know category
theory, as we will give a basic introduction in Section 2.

2 Basic Introduction to Category Theory
Most of the information on category theory comes from [4], and it is recommended that the
reader look there for further information on category theory.

Definition 1. A category consists of a set of objects and a set of arrows (called “morphisms”)
between objects. We use the notation f : A → B to write that f is an arrow from A to B.
Each arrow points from one object to another object. The objects and arrows must satisfy 4
properties:

1. identity For all objects A, there exists an arrow, IdA : A → A.

2. composition: For all arrows f : B → C and all arrows g : A → B, there exists arrow
f ◦ g : A → C.

3. identity cancellation: For all arrows f : A → B, f ◦ IdA = IdB ◦ f = f .

4. associativity: For all arrows f : C → D, g : B → C, h : A → B, f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Example. There are many examples of categories that the reader might perhaps already know:

1. Set: The objects are sets and the arrows are functions between sets.

2. Rng: The objects are rings and the arrows are ring homomorphisms.

3. Grp: The objects are groups and the arrows are group homomorphisms.

4. ≤: The objects are natural numbers and the arrows are proofs that a ≤ b.

One tool that is useful in category theory is the idea of a commutivity diagram, which allows
us to compactly and elegently represent equations.

Definition 2. A commutivity diagram is a type of picture that represents a category by
drawing the objects as points and arrows as directed arrows between objects, having the property
that all directed paths with the same start and end must represent the same composition. For
example, consider Figure 1. It represents the same information as Equation 1. Commutativity
diagrams are popular in category theory.

idb ◦ f = f idb ◦ g = g g ◦ f = h (1)

2

a b c
f

h

g

Idb

Figure 1: A Sample Commutivity Diagram

2.1 Functors
Functors are like the homomorphisms of categories, i.e. maps that respect certain properties of
a category.

Definition 3. Given categories C and D, we say that T : C → D is a functor from C to D if
T is a function from C to D. At risk of an abuse of notation, we say that T is a function on
both the objects and the arrows of C. We must have that T satisfies some additional properties:

1. For any object c in C, T (Idc) = IdT (c)

2. For all arrows f : B → C and g : A → B in C, T (f ◦ g) = T (f) ◦ T (g)

Example. Forgetful Functors: One example of a functor is called a forgetful functor, which
maps from a more structured category to a less structured category by simply “forgetting” some
of the information in the structure. Consider, for example, the map from Rng → Grp, or the
map from Grp → Set.

Another functor is called the identity functor, which just sends every object and arrow to
itself. We write the identity functor as IC .
Example. Consider the category N whose objects are sets of natural numbers and whose arrows
are functions on natural numbers, and consider Bn as a category whose objects are sets of n bit
binary strings and whose arrows are functions on binary strings. A function from N to Bn could
be to convert each natural number to its binary representation, and convert each function on
natural numbers to the corresponding number on binary representations. This functor will be
of interest to us later.

Definition 4. Given functors S, T : C → B, a natural transformation τ : S → T is a
function which assigns to each object c ∈ C an arrow τc : S(c) → T (c) in B in such a way such
that for every arrow f : c → c′ in C, we have that Figure 2 commutes.

We may say that natural transformations are to functors as functors are to categories.

Definition 5. Given functors S, T : C → B, we say there is a natural isomorphism, written
as S ∼= T , if there is a two-sided natural transformation between S and T . If S and T are
naturally isomorphic, we may regard them as being the same for all purposes.

Using functors, we can say if two categories are “the same”.

Definition 6. Given categories C and D, we say that C and D are equivalent categories if there
exist functors T : C → D and S : D → C such that S ◦ T ∼= IC and T ◦ S ∼= ID.

3

S(c) T (c′)

S(c′) T (c′)

τ(c)

S(f) T (f)

τ(c′)

Figure 2: A Commutativity Diagram for Natural Transformations

Y

X1 P X2

f2

f1
f

π1

π2

Figure 3: A Commutivity Diagram Representing Products

A property of categories that we will be using is called “products”, which you may think of
as being like a pair or a cartesian product.
Definition 7. Given a category C and objects X1, X2 in C, we call an object p in C the
product of X1 and X2 (written X1×X2) if there exist arrows π1 : P → X1, π2 : P → X2 (called
projections) such that for all objects Y in C and all arrows f1 : Y → X1 and f2 : Y → X2, there
exists a unique arrow f : Y → P such that Figure 3 commutes.

We now give some examples of products.
Example. In the category of sets, the product corresponds to the Cartesian product. In the
category of groups, the product corresponds to the direct sum.
Definition 8. Given a category C, we say that C is a monoidal category if it has a bifunctor
⊗ : C × C → C which is associatiative and has a two-sided inverse 1 ∈ C. We have that
equation 2 holds.

U ⊗ (V ⊗W) ∼= (U ⊗ V)⊗W (2)
U ⊗ 1 ∼= U (3)
1⊗ U ∼= U (4)

Definition 9. Given a category C, we say that C is a Cartesian category if it is a monoidal
category where the monoid operation is a product and the identity is the initial object.

This ends our discussion of Category Theory.

3 Preliminaries
We will be working with numbers and bits. Let N be a Cartesian category representing our
numbers. We will assume that there are bifunctors on N called

+N : N ×N → N ·N : N ×N → N.

4

Let Bn be a Cartesian category of n-bit binary representations. We will assume functors in
equation 5.

⊕ : B× B → B (5)
∧ : B× B → B (6)
∨ : B× B → B (7)
if : B× A× A → A (8)

We will assume the following properties in equation 9.

∀A ∈ B ∀c ∈ S if(A, c, c) = c (9)
∀A ∈ B ∀b, c ∈ S ∀f : S → T f(if(A, b, c)) = if(A, f(b), f(c)) (10)

∀A,B ∈ B ∀a, b, c ∈ S if(A, if(B, a, b), c) = if(A ∧B, a, if(A, b, c)) (11)
∀A,B ∈ B ∀a, b, c ∈ S if(A, a, if(B, b, c)) = if(A⊕ B, if(A, a, b), c) (12)

To go between numbers and bits, we will assume there is a homomorphism

%2 : N _ Bit

such that for all A,B ∈ N

%2(1N) = 1B %2(0N) = 0B %2(A+N B) = %2(A)⊗%2(B).

You can think of %2 as just returning the last bit of a number (1 if the number is odd and 0
if the number is even).

We will represent binary numbers in Agda as lists of bits, where the least significant bit is on
the left (little endian encoding).

As an additional preliminary, we expect the reader to be familiar with common bitwise oper-
ations, including · ⊕ ·, · ∨ ·, and · ∧ · (see table 1).

· ⊕ · · ∨ · · ∧ ·
0⊕ 0 = 0 0 ∨ 0 = 0 0 ∧ 0 = 0
0⊕ 1 = 1 0 ∨ 1 = 1 0 ∧ 1 = 0
1⊕ 0 = 1 1 ∨ 0 = 1 1 ∧ 0 = 0
1⊕ 1 = 0 1 ∨ 0 = 1 1 ∧ 1 = 1

Table 1: · ⊕ ·, · ∨ ·, and · ∧ ·

5

NatToLittleEndian : N _ Bits b
NatToLittleEndian {0} = %2
NatToLittleEndian {suc b} = %2 △ (NatToLittleEndian {b} ◦ /2)

bitToNat : Bit _ N
bitToNat = if ◦ const� (p1 △ p0)

LittleEndianToNat : Bits b _ N
LittleEndianToNat {0} = bitToNat
LittleEndianToNat {suc b} = add ◦ (bitToNat ⊗ (*2 ◦ LittleEndianToNat {b}))

Figure 4: Agda Code for Converting a Number to Binary

4 Converting Between Numbers and Bits
We need to be able to convert between numbers and bits. This is not too difficult, as to get the
nth bit, we bit-shift over n places and then get the last bit. We might write this as

NtoBn(A) = [A%2,
A

2
%2,

A

4
%2, . . . ,

A

2n−1
%2]. (13)

BntoN([b1, b2, . . . , bn]) = b1 + 2b2 + 4b3 + · · ·+ 2n−1bn (14)
In Agda, we would write equation 13 as Figure 4.

See Figures 5 and 6 for an example of these conversions. In order for NtoBn and BntoN to

Input

1

0

1

1

1

0

if 1
1

0

1

0

if 0

0

1

1

0

if 1

1

1

4
add 5 5 output5

2

2
add 4

3

1

0

2
add 2

0

1

0
add 1

1

2

2

1

1
add 2

1

1 2

Figure 5: An Example showing B3toN(101) = 5

be correct, we would need that diagram 7 commutes.
In equational form, diagram 7 is equivalent to equation 15.

NtoBn ◦ BntoN ≡ idBn BntoN ◦NtoBn ≡ idN (15)

In Agda, we would write equation 15 as Figure 8. In category theory, diagram 7 shows there

6

Input 5

5 %2 15

5 /2 2

5
1

0

1

output

1

2 %2 02

2 /2 1

2

0

1 %2 1

1

1

Figure 6: An Example showing NtoB3(5) = 101

AN ABn

NtoBn

IdN

BntoN

IdBn

Figure 7: Correctness Specification for Conversions Between Numbers and their Respective
Binary Representations

exists an equivalence of categories between N and Bn. Equation 15 is true, but the proof is too
long to be contained here. You can see the proof at [3].

5 Addition

5.1 Correctness of Addition
Before we can discuss addition, we need to make sure we know what we mean by correct
addition. Addition on binary numbers is correct if and only if diagram 9 commutes. Diagram 9
in equational form is equivalent to equation 16.

For all A,B ∈ Bn BntoN(A+Bn B) = BntoN(A) +N BntoN(B). (16)

In Agda, we would write the same specification as Figure 10.

inverses : NatToLittleEndian {b} ◦ LittleEndianToNat {b} ≈ id
inverses = {! !}

Figure 8: An Agda Specification that Conversions are Inverses

7

ABn × BBn ABn +Bn BBn

AN × BN AN +N BN

+Bn

BntoN BntoN

+N

Figure 9: Correctness Specification for Addition on Binary Representations

RCAspecification : LittleEndianToNat {suc b} ◦ RippleAdd {b} ≈ add ◦ twice (LittleEndianToNat {b})
RCAspecification = {! !}

Figure 10: Specification of Addition in Agda

5.2 Defining Addition
Before we can define an adder, we need to define half-adders and full-adders. Half-adders and
Full-adders are tools from electronics for adding two or three bits at a time, respectively. A
half-adder adds two bits with a carry, so for example

0 +H 0 = (0, 0) 0 +H 1 = 1 +H 0 = (1, 0) 1 +H 1 = (0, 1)

where, for convention, we say the left bit is the sum and the right bit is the carry. We might
write ·+H · as equation 17.

∀A,B ∈ B1 A+H B = (A⊕ B,A ∧B) (17)

In Agda, we would write equation 17 as Figure 11.The half-adder is correct if and only if
diagram 14 commutes. In equational form, diagram 14 is equivalent to equation 18.

For all A,B ∈ B1 B2toN(A+H B) = B1toN(A) +N B1toN(B) (18)

We will now prove equation 18

halfAdder : Bit × Bit _ Bit × Bit
halfAdder = xor △ and

Figure 11: A half-adder in Agda

8

AB1 × BB1 AB1 +H BB1

AN × BN AN +N BN

+H

B1toN B2toN

+N

Figure 12: Correctness Specification of a Half-adder

halfAdderSpecification : LittleEndianToNat {1} ◦ halfAdder ≈ add ◦ twice bitToNat

Figure 13: A Proof of our half-adder specification written in Agda

Proof. We prove equation 18 using the algebraic laws introduced in equation 9.

if(A, 1, 0) + if(B, 1, 0) = if(A, 1 + if(B, 1, 0), 0 + if(B, 1, 0))

= if(A, if(B, 2, 1), if(B, 1, 0))

= if(A ∧B, 2, if(A, 1, if(B, 1, 0)))

= if(A ∧B, 2, if(A⊕ B, if(A, 1, 1), 0))

= if(A ∧B, 2, if(A⊕ B, 1, 0))

= if(false, 3, if(A ∧B, 2, if(A⊕ B, 1, 0)))

= if((A ∧B) ∧ (A⊕ B), 3, if(A ∧B, 2, if(A⊕ B, 1, 0)))

= if(A ∧B, if(A⊕ B, 3, 2), if(A⊕ B, 1, 0))

= if(A ∧B, 2 + if(A⊕ B, 1, 0), 0 + if(A⊕ B, 1, 0))

= if(A ∧B, 2, 0) + if(A⊕ B, 1, 0)

In Agda, we would write the same proof as Figure 13. To see an example of a half-adder, look
at figure 14.

A full-adder is very similar to a half-adder, except a full-adder adds 3 bits and returns a sum
bit and a carry bit. For example, see equation 19.

+F (0, 0, 0) = (0, 0) (19)
+F (1, 0, 0) = +F (0, 1, 0) = +F (0, 0, 1) = (1, 0) (20)
+F (0, 1, 1) = +F (1, 0, 1) = +F (1, 1, 0) = (0, 1) (21)
+F (1, 1, 1) = (1, 1) (22)

A full-adder is correct if and only if diagram 18 commutes. In equational form, diagram 18 is
equivalent to equation 23.

for all A,B,C ∈ B1 B2toN(+F (A,B,C)) = B1toN(A) + B1toN(B) + B1toN(C) (23)

9

Input
1

1
1

1
xor 0

1

1

1

1
and 1

1

1

1

0
output

0

1

Figure 14: A Half Adder in bit Operations

AB1 × BB1 × CB1 +F (AB1, BB1, CB1)

AN × BN × CN AN +N BN +N CN

+F

B1toN B2toN

+N

Figure 15: Correctness Specification of a Full-adder

In Agda, we would write equation 23 as Figure 16.
We will now prove equation 23.

Proof.

if(A, 1, 0) + if(B, 1.0) + if(C, 1, 0) = if(A ∧B, 2, 0) + if(A⊕ B, 1, 0) + if(C, 1, 0)

= if(A ∧B, 2, 0) + if((A⊕ B) ∧ C, 2, 0)

+ if(A⊕ B ⊕ C, 1, 0)

= if(A ∧B ∨ A⊕ B ∧ C, 2, 0) + if(A⊕ B ⊕ C, 1, 0)

One example of an explicitly written full-adder is equation 24.

+F (A,B,C) = (A⊕ B ⊕ C,AB ∨ (A⊕ B)C) (24)

In Agda, we may write equation 24 as Figure 17. To see an example of a full-adder, look at

fullAdderSpecification : LittleEndianToNat {1} ◦ fullAdder ≈ add ◦ second add ◦ (bitToNat ⊗ twice bitToNat)

Figure 16: A Full-Adder Specification in Agda

10

fullAdder : Bit × Bit × Bit _ Bit × Bit
fullAdder = second or ◦ inAssoc�′ (first halfAdder) ◦ second halfAdder

Figure 17: A full-adder in Agda

Input

1

0

1

1

0
half-adder

0

1

1

0

1

1
half-adder

1

0
1

1

0
output

1

0

1
or 1

0

0

1
1

Figure 18: A Full Adder in Bit Operations

figure 18.
The reason we care about full-adders is that full-adders are the building blocks which we use

to build up an n bit adder (in general, to write an n bit adder, we use n full-adders).
Using a full-adder, we may define a ripple-carry adder (RCA). An RCA is similar to the

addition taught in school. See table 2. One example of an RCA is Figure 20.

(a0, a1, a2, . . . , an) +
c0
Bn (b0, b1, b2, . . . , bn) = (r0, (a1, a2, . . . , an) +

c1
Bn−1 (b1, b2, . . . , bn))

where
(r0, c1) = +F (a0, b0, c0)

(25)

To see an example of a 3-bit RCA, look at figure 19. In Agda, we could write this as Figure 19.

5.3 Proof of Correctness
We will now prove the correctness of our addition on binary numbers. We need to show equa-
tion 26.

For all A,B ∈ Bn c ∈ B1 Bn+1toN(A+c
BnB) = BntoN(A)+NBntoN(B)+NB1toN(c) (26)

Proof. We will prove by induction on n.
Base Case: n = 0 follows from a simple computation.

1 11 10 1
+ 1 1 1
1 1 0 0

Table 2: Grade-School Addition

11

RCA : Bit × List b (Bit × Bit) _ Bits (suc b)
RCA {0} = fullAdder
RCA {suc n} = second (RCA {n}) ◦ inAssoc�′ (first fullAdder)

RippleAdd : Bits b × Bits b _ Bits (suc b)
RippleAdd {b} = RCA {b} ◦ const� (bit0) ◦ zip {b}

Figure 19: A Ripple-Carry Adder in Agda

Input 1

1

0

1

1

1

0

Full-Adder
1

0

1

0

1

1

Full-Adder
1

0

0
1

1

1

Full-Adder
1

1

1

Input 2

1

1

1

1

1

1
1

1

0

0

Output

0

1

0

1 1

1

Figure 20: A 3-bit ripple carry adder

Inductive case: n = n+ 1

Bn+1toN(A+c
Bn B)

= if(a0 ⊕ b0 ⊕ c, 1, 0) +N 2BntoN([a1, . . . , an−1] +
abb0∨(a0⊕b0)c
Bn−1 [b1, . . . , bn−1])

= if(a0 ⊕ b0 ⊕ c, 1, 0) +N 2(Bn−1toN([a1, . . . , an−1])

+N Bn−1toN([b1, . . . , bn−1])) +N if(abb0 ∨ (a0 ⊕ b0)c, 1, 0)

= if(a0 ⊕ b0 ⊕ c, 1, 0) +N if(abb0 ∨ (a0 ⊕ b0)c, 1, 0)

+N 2Bn−1toN([a1, . . . , an−1]) +N Bn−1toN([b1, . . . , bn−1])

= if(a0, 1, 0) +N if(b0, 1, 0) +N if(c, 1, 0) +N 2 ∗ Bn−1toN([a1, . . . , an−1])

+N Bn−1toN([b1, . . . , bn−1])

= (if(a0, 1, 0) +N 2Bn−1toN([a1, . . . , an−1]))

+N (if(b0, 1, 0) +N 2Bn−1toN([b1, . . . , bn−1])) +N if(c, 1, 0)

= BntoN(A) +N BntoN(B) +N B1toN(c)

12

AB × BBn mulBit(AB, BBn)

AN × BN AN ·n BN

mulBit

BntoN BntoN

·N

Figure 21: Correctness Specification of mulBit

6 Multiplication
We will now look at binary multiplication, which will seem very similar to addition. The first
step we need to take is to ensure that we have a correctness specification for multiplication. We
say a multiplication function ·Bm,n is correct if it satisfies Equation 27.

For all A ∈ Bm B ∈ Bn Bm+ntoN(A ·Bm,n B) = Bm(A) ·N BntoN(B) (27)

We first need multiplication of a number by a single bit. We will say multiplication by a single
bit is correct if Figure 21 commutes.

Figure 21 is equivalent to equation 28.

For all A ∈ B1 B ∈ Bn BntoN(mulBit(A,B)) = B1toN(A) ·N BntoN(B) (28)

An example instance of multiplication on a single bit as equation 29. We may alternatively
implement a bit multiplier as equation 31, although equation 29 is easier to prove.

mulBit :B1×Bn →Bn (29)
mulBit(a , [b0, b1, . . . , bn−1]) = [a ∧ b0, a ∧ b1, . . . , a ∧ bn−1] (30)

mulBit :B1×Bn →Bn (31)
mulBit(a , B) = if(a,B, 0) (32)

We will now prove that equation 29 satisfies equation 28.

Proof. Induct on n.

BntoN(mulBit(A, [b0, b1, . . . , bn−1]))

= if(A ∧ b0, 1, 0) + 2Bn−1toN(mulBit(A, [b1, b2, . . . , bn−1]))

= if(A ∧ b0, 1, 0) + 2(B1toN(A) ·N Bn−1toN([b1, b2, . . . , bn−1]))

= if(A, 1, 0) ·N if(b0, 1, 0) + 2(B1toN(A) ·N Bn−1toN([b1, b2, . . . , bn−1]))

= B1toN(A) ·N BntoN(B).

13

Input 1

1

0

1

1

1
And 1

1

0

1
And 0

0

1

1
And 1

1Input 2 1

1

1

1

1

0

1

Output

1

0

1

Figure 22: Diagram of a Bit Multiplier

mulDigit : Bit × Bits b _ Bits b
mulDigit {0} = and
mulDigit {suc n} = (and ⊗ mulDigit {n}) ◦ transpose ◦ first dup

Figure 23: A Bit Multiplier in Agda

To see an example of a bit muliplier in a diagram, look at Figure 22. In Agda, we would write
this code as in Figure 23. We would write our specification as Figure 24.

For our multiplier, we also need the ability to shift over bits. Shifting provides an example of
the difference between operational and denotational thinking. The operational meaning is that
shifting appends n 0-bits to the end of a number. The denotational meaning is that shifting
multiplies a binary representation by 2n. We would write the denotational specification in Agda
as Figure 25. Using this specification, we would then implement a shifter in Agda as Figure 26.
We will leave the proof of correctness of Figure 26 as an exercise to the reader (hint: induct on
the amount of shifting).

Using a bit multiplier, we can define a shift and add multiplier. See Table 3 for an example
of shift-and-add multiplication.

In mathematical notation, we would write an add-and-shift multiplier as Equation 33.

mulDigitSpec : LittleEndianToNat {b} ◦ mulDigit {b} ≈ mul ◦ (bitToNat ⊗ LittleEndianToNat {b})

Figure 24: A Bit Multiplier Specification in Agda

14

«spec : (a b : N) → LittleEndianToNat {b + a} ◦ « {a} {b} ≈ (2^ b) ◦ LittleEndianToNat {a}
«spec = {! !}

Figure 25: The Denotational Specifcation for Shifting

« : Bits a _ Bits (b + a)
« {b = 0} = id
« {b = suc b} = (const� bit0) ◦ « {b = b}

Figure 26: An Implmentation of Shift in Agda

1 0 1 1
× 1 1 1 0

0 0 0 0
1 0 1 1

1 0 1 1
+ 1 0 1 1
1 0 0 1 1 0 1 0

Table 3: An Example shift-and-add multiplication

For all b0, b1, . . . , bn−1 A ∈ Bm [b0, b1, . . . , bn−1]·Bn,mA = mulBit(b0, A)+([b1, . . . , bn−1]·Bn−1,mA) ≪ 1
(33)

In Agda, we would write a shift-and-add multiplier as Figure 27. We will now proof Equa-
tion 33 satisfies Equation 27.

Proof. We will induct on n.

Bm+ntoN([b0, b1, . . . , bn−1] ·Bn,m [a0, a1, . . . , am−1])

= BmtoN(mulBit(b0, [a0, a1, . . . , am−1])) + 2Bm+n−1toN([, b1, . . . , bn−1] ·Bn,m [a0, a1, . . . , am−1])

= B1toN(b0)BmtoN(A) + 2Bm+n−1toN([, b1, . . . , bn−1] ·Bn,m [a0, a1, . . . , am−1])

= B1toN(b0)BmtoN(A) + 2Bn−1([a1, . . . , an−1])BmtoN(A)

= Bn(B)BmtoN(A)

15

shiftAndAdd : Bits a × Bits b _ Bits (suc (a + b))
shiftAndAdd {0} {b} = («’ {0} {suc b} ◦ bit0 ◦ !)
shiftAndAdd {suc a} {b} = RippleAdd {suc a + b} ◦ (« {b} {suc a} ◦ mulDigit {b} ⊗ shiftAndAdd {a} {b})
◦ transpose ◦ second dup

Figure 27: A Shift-And-Add Multiplier in Agda

7 Future Work
We will now describe future work for the technique of Denotational Design. There are of course
binary subtractors and binary dividers to specificy and prove their correctness. One interesting
avenue is to prove the correctness of fast adders such as the Brent-Kung adder. Such specification
is of greater value because Brent-Kung adders are in use in actual hardware, and the correctness
of parallel adders is less apparent.

Acknowledgements
The author would like to ackowledge Conal Elliott for his invaluable feedback and insight. The
author would like to thank Simon Rubenstein-Salzedo for organizing the Euler Circle. The
author would like to thank Abhy Devalapura for his wisdom and advice.

References
[1] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a functional language

with dependent types. In Theorem proving in higher order logics. 22nd international con-
ference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, pages 73–78.
Berlin: Springer, 2009.

[2] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the 2nd
ACM SIGPLAN international conference on functional programming, ICFP ’97, Amsterdam,
Netherlands, June 9–11, 1997, pages 263–273. New York, NY: Association for Computing
Machinery (ACM), 1997.

[3] Atticus Kuhn. Parallel algorithms. https://github.com/AtticusKuhn/
parallel-algorithms, 2023.

[4] Saunders Mac Lane. Categories for the working mathematician., volume 5 of Grad. Texts
Math. New York, NY: Springer, 2nd ed edition, 1998.

16

https://github.com/AtticusKuhn/parallel-algorithms
https://github.com/AtticusKuhn/parallel-algorithms

	Introduction
	Basic Introduction to Category Theory
	Functors

	Preliminaries
	Converting Between Numbers and Bits
	Addition
	Correctness of Addition
	Defining Addition
	Proof of Correctness

	Multiplication
	Future Work

