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1. INTRODUCTION

When looking at matrices, forcing ”nice” properties such as being square can lead to other
interesting results. In 1907, Perron and Frobenius realised several properties of real square matrices
that were unexpected and useful. This theorem is used in several areas, such as ergodic Markov
chains. In this paper we will look at the Perron-Frobenius theorem, prove some of its statements,
and explore into some applications.

2. BACKGROUND

Before we can state the Perron-Frobenius theorem, we need a few definitions. These definitions
mostly come from linear algebra, because the Perron-Frobenius theorem deals with that subject.

Definition 1. If A is an nx n matrix and λ is a scalar, the λ-eigenspace is the set of all vectors −→v
∈ Rn such that A−→v = λ−→v . So, the nonzero vectors in Eλ are exactly the eigenvectors of A with
eigenvalue λ.

We can think of the eigenspace as all the vectors that are the same when multiplying by the
matrix and the scalar.

Definition 2. The dimension of the eigenspace is called the geometric multiplicity of λ. The alge-
braic multiplicity of an eigenvalue is the multiplicity of the root.

Definition 3. The spectral radius ρ(A) of a matrix is the max of the absolute values of the eigen-
values of A.

2.1. The Perron-Frobenius theorem. Now that we have defined these terms, we are ready to
state the Perron-Frobenius theorem. I will state the version for positive matrices, although there
does exist a version for non-negative matrices.

theorem 4 (Perron-Frobenius). Let A = (aij)1≤i,j≤n be an n× n square matrix such that aij > 0
for all i, j.

• There is a positive number r, called the Perron-Frobenius eigenvalue of A, such that r is
an eigenvalue of A, and for every other eigenvalue λ of A, |λ| < r.
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• The eigenspace corresponding to the Perron-Frobenius eigenvalue is 1-dimensional.
• There exists an eigenvector v, called the Perron-Frobenius eigenvector, for the Perron-

Frobenius eigenvalue such that all the entries of v are positive.
• The only nonnegative eigenvectors of A are multiples of the Perron-Frobenius eigenvector.

3. PROOF OF THE PERRON-FROBENIUS THEOREM

3.1. Introduction. The proof of the Perron-Frobenius theorem can be somewhat long, but it is
manageable, and I would say it can lead to a deeper understanding the Perron-Frobenius theorem.

I will split up each statement of the Perron-Frobenius theorem, and prove each of them sepa-
rately.

3.2. Perron-Frobenius Eigenvalue. First I will prove there is a number r which is the Perron-
Frobenius Eigenvalue.

First we will show there exists a postive eigenvalue. The trace of the matrix is positive, and since
the trace can be expressed as the sum of the eigenvalues then there is a postitive eigenvalue.

Since the matrix is positive, there must exist an eigenvalue which is larger than all other eigen-
values.

3.3. Eigenspace is 1 Dimensional. I will prove that the Eigenspace is 1 dimensional. The di-
mension is also sometimes called the geometric multiplicity. I will accomplish this by a proof by
contradiction.

Assume that v is an eigenvector and v’ is a linearly independent eigenvector of r. v′ is a linearly
independent eigenvector of the eigenvalue ρ(A). We can assume that v′ is real; otherwise we take
real and imaginary parts, and the parts are still eigenvectors, because A and ρ(A) are real. One of
them must be linearly independent of v. Let c > 0 be chosen so that v - cv′ is non-negative and at
least one entry is zero. It is not the zero vector, because v, v′ are linearly independent. However
v − cv′ = A[v−cv′]

ρ(A)
> 0 We chose c so that at least one entry was zero, meaning a contradiction.

Thus, there cannot be two linearly independent eigenvectors, so ρ(A) has geometric multiplicity 1.

3.4. Multiples of the Perron-Frobenius Eigenvector. I will prove that the only eignenvectors
are multiples of the Perron-Frobenius eigenvector. This step mostly follows from the fact that
the Perron-Frobenius eigenspace is 1 dimensional Let λ be an eigenvalue and y be an positive
eigenvector. Let x be the Perron-Frobenius eigenvector, then rxTy = (xTA)y = xT (Ay) = λxTy,
and xTy > 0, which means that that we has r = λ. Because the eigenspace is one-dimensional, the
eigenvector y is a multiple of the Perron–Frobenius eigenvector.

4. APPLICATIONS

One application of the Perron-Frobenius Theorem is applying it to Markov chains.

4.1. Stationary Distribution. The classic example is proving that every Markov chain has a
unique stationary distribution.

Let π denote a Perron-Frobenius eigenvector of P, with π ≥ 0 and 1Tπ = 1 because P π = π,
π corresponds to a stationary distribution. of the Markov chain. Now, let P be regular, which
means for some k,P k > 0. Since (P k)ij is P(Xt+k = i|Xt = j), this means there is a positive
probability of going from any state to any other in k steps since P is regular, there is a unique
invariant distribution π, which satisfies π > 0 the eigenvalue 1 is simple and dominant, so we
have pt → π, no matter what the initial distribution p0 in other words: the distribution of a regular
Markov chain always converges to the unique invariant distribution.
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4.2. Pagerank. A perhaps more real world example of the Perron-Frobenius theorem might be in
pagerank, the algorithm used to rank pages in search engines. It can be thought of as a random
walk on websites, where at each step the walker clicks on a random link on a site.

If there are n sites, then the adjacency matrix is a n x n matrix with entries Aij = 1 if there exists
a link from ajto ai . If we divide each column by the number of 1 in that column, we obtain a
Markov matrix A which is called the normalized web matrix. Define the matrix E which satisfies
Eij =

1
n

for all i, j.
The Google matrix is then dA+ (1d)E, where 0 < d < 1 is a parameter called damping factor.
The reason this example relates to the Perron-Frobenius theorem is that the Perron-Frobenius

eigenvector of A scaled so that the largest value is 10 , and it is called page rank of the damping
factor d. Although this example is somewhat more tangentially related, it is nice to know this
theorem is useful in some unexpected places.

5. CONCLUSION

The Perron-Frobenius theorem is a classic example of how just from restricting a few properties,
many other consequences follow.

If you are interested in learning more about the Perron-Frobenius theorem, here are some re-
sources which go into further depth on the subject: “ Perron-Frobenius Theorem for Nonnegative
Tensors” by Chang, Kung-Ching, Kelly Pearson, and Tan Zhang and “The Perron–Frobenius The-
orem and the Ranking of Football Teams” by Keener, James
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